Translating ENDF/B-VIII.0 into GND

Mini CSEWG, May 5 2017

Caleb M Mattoon Presented by Bret Beck

LLNL-PRES-730621

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

GND specification is nearing completion

- FUDGE is being modified to match GND specifications
- U.S. nuclear data community plans to release ENDF/B-VIII in both ENDF and GND
 - Estimated release date is mid-December 2017
 - ENDF ⇔ GND translation needs to be nearly one-to-one
 - A little work to do still
 - New version of Fudge will be released at the same time as ENDF/B-VIII
 - same version used to translate ENDF-VIII into GND
 - After the release, further changes to GND specifications will need to be approved by new format governance board, EG-GNDS (part of WPEC).
- GND translation is also being tested on other libraries including JEFF-3.2, JENDL-4 and TENDL-2015

Current status of ENDF-VIII to GND translation

- Sub-libraries currently being translated:
 - Incident n, p, d, t, He3, alpha, gamma and electron data
 - standards
 - photo-atomic
 - atomic relaxation (except writing back to ENDF-6 is currently broken)
 - thermal_scattering
- Not yet translated (Dave Brown is working on these: likely as I speak)
 - Neutron-induced and spontaneous fission yields
 - nfy and sfy translation is simple, but need to finalize how to store them in GND
 - Decay sub-library

Some files have "problem" data

- The translator complains about some data issues, but can "recover" from them with the proper flags
- Fission cross section stored in MF10
 - New W evaluations use unofficial ENDF format modification to store fission cross section
 - Affects W182-186. Crashes unless option --ignoreMF10Fission used
- Missing evaluation date in MT451
 - GND requires evaluation date. n + Pu239 fails without '--skipBadDate'
- Unnormalizable continuum gammas in MF6
 - GND stores gammas similar to the MF12,15 forms, thus MF6 gamma data must be converted to MF12,15 like data
 - At some incident energies, the continuum gamma spectrum has 0 area and cannot be normalized as needed for MF12 like data.
 - Translator crashes unless option --continuumSpectraFix is set
 - Affected isotopes:
 - n + Cl35, Ca42-46, As73, Pb204-207
 - -p + Be9

More detail on continuum gamma problem

- In MF6, continuum, primary and discrete gammas are all listed together for each incident energy, along with total multiplicity for all gammas
 - Each primary & discrete has a probability, continuum has a spectrum
 - Some continuum spectra are all 0s
 - probability distribution at these incident energies cannot be normalized
 - Probability can go from non-zero to zero and back multiple times:

Patching continuum gamma problems

 When option --continuumSpectraFix is supplied, the translator replaces 0-norm continuum spectra with a delta function, weighted by total gamma multiplicity

This is just a temporary work-around. Gamma spectra need more attention!

We often 'verify' translation by converting back to ENDF-6

- Run 'rePrint.py' to translate and ENDF-6 file to GND and back to ENDF-6
- We xxdiff the original ENDF-6 and GND → ENDF-6 files or simply count the number of lines that differences
 - First remove line numbers to simplify comparison
- 222K (out of 11.5M) lines differ in neutron sub-library
 - Worst culprits (>2000 diffs): Be9, Cl35, Ca, Ni, Ge, Zr91, Mo, Sn, W, Pb, Th232
- 46K (out of 2.8M) lines differ in gamma sub-library
 - Dominated by U234, U236, Pu238, Pu241
- Most differences do not matter

Common reasons for differences after rePrint.py

- When duplicate (x,y) points appear in TAB1, the translator drops the second point where possible. Can result in many diffs that are not important!
- ENDF stores mass (AWR) many times, GND picks the most frequently-used value and only stores that.
- Small (few eV) domain mismatch between cross section and multiplicity/distribution
 - Re-written file uses MF3 domain everywhere
 - Larger mismatch is treated as an error
- INTG records in MF32 are inconsistent: some files store 0 correlations explicitly, others leave them blank

Other checks

- Beyond translation, LLNL is doing other tests on ENDF-VIII:
 - All test on GND data
 - ENDF/B-VII.1 and ENDF/B-VIII
 - LLNL ENDL2009.3 and ENDL2011.3
 - Physics checks: are distributions normalized? Energy balanced? Can resonances be reconstructed? Do cross sections sum to total?
 - Still run into lots of warnings at this step, especially about energy balance.
 Worst cases are getting reported to authors
 - Processing neutron evaluations for Monte Carlo and Sn codes, running V&V benchmark suite
 - LLNL codes Mercury (MC) and Ardra (Sn) can now read processed data from GND
 - ENDF/B-VII.1
 - LLNL ENDL2009.3 and ENDL2011.3
 - Will be adding ENDF/B-VIII any day

Tasks before the ENDF-VIII release

- Finalize GND specifications
- Start translating nfy, sfy and decay sub-libraries
- More testing
- We have released sample GND files translated from ENDF/B-VII.1 for feedback.
 - If you have not received and email about them and would like to see them, send me an email.